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A comprehensive stochastic model for simulating grain structure formation and evolution
during solidification processes is developed, based on a finite differential method (FDM) for
macroscopic heat flow calculation and a cellular automaton method (CA) for microscopic
modelling of nucleation, growth, solute redistribution and solute diffusion. Formation of
peritectic phases in the last solidified liquid regions is considered. The growth rates of
peritectic phases are calculated by the peritectic growth kinetics model. The solidification
contraction is also taken into account. The calculated results are compared with those
obtained experimentally. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Ti-Al alloy exhibits a remarkable potential for struc-
tural applications in aerospace and automotive indus-
tries at high temperatures. During the last decade, re-
search and development of this alloy was focused on a
better understanding of the grain structure formation.
Then, a quantitative study and control of solidification
sequences in casting is important since it is closely re-
lated to the productivity of the process and the quality
of the casting products. Therefore, there is a consider-
able potential for using computer simulation as a tool
for this purpose.

Deterministic models have been first developed for
the description of the nucleation, growth and impinge-
ment of equiaxed grains during solidification processes
[1]. However these models suffer from several limita-
tions [2]: (1) the grains are assumed to remain spher-
ical even in a strong thermal gradient; (2) columnar
structures and thus the columnar-to-equiaxed transi-
tion (CET) are usually not accounted for; (3) the com-
petition occurring among the grains belonging to the
columnar zone and the associated evolution of their
crystallographic texture are not described at all; (4)
simulated micrographs cannot be produced using such
models.

Stochastic models have been developed to solve
the limitations mentioned above, by which individual
grains are identified and their shape and size can be
shown graphically. Spittle and Brown [3] used a Monte
Carlo (MC) method to simulate grain growth and grain
interaction during solidification. The influence of pro-
cessing variables on grain structure in a single-phase
binary alloy was studied. However, MC method ig-
nores the specifics of dendrite growth that include tip
kinetics and preferred crystallographic growth direc-
tion, and therefore suffers from a lack of physical back-

ground. Rappaz and Gandin [4] first used the Cellular
Automaton-Finite Element (CA-FE) technique to pre-
dict solidification grain structures in turbine blade cast-
ing. The heterogeneous nucleation, the growth kinetics
and the preferential growth directions of dendrites were
taken into account in their model. However this tech-
nique suffers from one limitation: in the calculation
for equiaxed dendritic solidification, constant growth
coefficient was assumed. The influence of microsegre-
gation on solidification grain structure is ignored. In the
model developed by Nastac and Stefanescu [5], the ef-
fect of microsegregation on solidification was included
through the correct calculation of the equiaxed dendritic
growth coefficient. And the size and shape of grains
predicted by this model were in better agreement with
the experimental observations. But the calculation of
microsegregation is performed in a complex determin-
istic way [6] and not proper for efficient simulation of
grain structure formation in the real castings. Tongmin
Wang et al. [7] developed a modified cellular automa-
ton (MCA) method, in which solute redistribution and
solute diffusion were coupled with microscopic nucle-
ation and growth of grains. Howerver, due to the con-
sideration of microsegregation in the MCA, how to deal
with the last solidified liquid regions is not explained
in their model. Furthermore, the solidification contrac-
tion occurring during solidification processes is also
ignored.

In this paper, a comprehensive stochastic model
for simulating grain structure formation is developed,
based on the FDM method for macroscopic modelling
of heat transfer and a CA method for microscopic mod-
elling of nucleation, growth, solute redistribution and
solute diffusion. For Ti-45 at%Al alloy, the formation
of peritectic phases in the last solidified liquid regions
is considered. The growth rates of peritectic phases are
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calculated by the peritectic growth kinetics model. The
solidification contraction is also taken into account. The
simulated results are compared with those obtained ex-
perimentally.

2. Mathematical model
2.1. Governing equations
We solve the heat equation by means of the finite-
difference method.

ρcp
∂T

∂t
= ∇(λL∇T ) + ρL

∂ fs

∂t
(1)

where λL is the liquid thermal conductivity; ρ is the
density; cp is the specific heat; L is the latent heat; and
fs is solid fraction.

For the solution of Equation 1, provided that the in-
crease in solid fraction at each node, � fs,i , is known,
the new temperature is given by:

T t+�t
i = T t

i + λL

ρcp
∇(∇T )�t + L

ρcp
� fs,i (2)

where i is a subscript indicating the different nodes of
the FDM mesh. The role of the stochastic method is to
provide the change in solid fraction, � fs,i , at each node
during each time step, from which new temperature can
be calculated. The coupling between the macroscopic
heat diffusion and microscopic microstructural evolu-
tion takes place through Equation 2.

It is assumed that local equilibrium at the solid/liquid
interface:

C∗
S = kC∗

L (3)

where k is the partition coefficient; C∗
S is solid concen-

tration at S/L interface; and C∗
L is liquid concentration

at S/L interface.
Solute diffusion in a binary system is given by:

∂CL

∂t
= DL∇(∇CL ) (4)

where DL is the liquid diffusion coefficient; CL is the
liquid concentration, no solute diffusion in the solid.

2.2. Nucleation model
Gaussian law is used in the continuous nucleation
model:

dn

d(�T )
= nmax√

2π · �Tσ

exp

(
− (�T − �Tmax)2

2 · �T 2
σ

)
(5)

where n is the nuclei density; nmax is the maximum
nuclei density; �Tσ and �Tmax are the standard de-
viation and the mean nucleation undercooling of the
distribution.

2.3. Growth model
For the case of columnar dendritic solidification, the
Kurz-Giovanola-Trivedi (KGT) model [8] is used to
calculate the growth rate:

Vcolumnar = A(�T )2

= DL

2π2m (k − 1)Co�
(m(Co − C∗

L ))2 (6)

where A is growth coefficient; � is the Gibbs-Thomson
coefficient; m is the liquidus slope and �T is the un-
dercooling.

For equiaxed dendritic solidification, the model de-
veloped by Nastac and Stefanescu [5] is applied. Thus,
the growth velocity of the tip is described by:

Vequiaxed = B(�T )2 with

B = 2σ ∗

�

[
m(k − 1)C∗

L

DL
+ ρL

λL

]−1

(7)

where B is growth coefficient and σ ∗ = 1/4π2. The
melt undercooling for the system under consideration
can be calculated based on the following assumption:

�T = T L + m(〈CL〉L − Co) − Tb (8)

where TL is the equilibrium liquidus temperature;
〈CL〉L is the intrinsic volume average extradendritic liq-
uid concentration and Tb is the average temperature in
the macro-element. For the growth of peritectic phase,
the growth kinetics model is developed by Fredrikson
et al. [9]:

Vp = 9

8π

DL

R
	2

p (9)

	p = 	∗2

5.6
(
1 − 2

π
	∗ − 1

2π
	∗2

) (10)

	∗ = Cα-Ti
L − CP L

Cα-Ti
L − C L

α-Ti

(11)

R = 32Rc

3	∗ (12)

�Tp = mL
α-TiCP L

(1 − kα-Ti)	
∗

1 − (1 − kα-Ti)	∗ (13)

where 	p is function of peritectic-solute supersatura-
tion; 	∗ is peritectic-solute supersaturation; For Ti-45
at%Al alloy, Cα-Ti

L and C L
α-Ti are liquid concentration

and solid concentration of α-Ti in equilibrium, respec-
tively; R is the actual tip radius; Rc is the critical radius
for nucleation (1 μm). From Equations 9–13, no simple
relationship between growth rate Vp and undercooling
�Tp can be obtained. Then, a numerical solution, ap-
proximated by an exponential function, is developed:

Vp = C × exp

(
�Tp

D

)
with

(14)
C = 2.8 × 10−6 D = 1.02

where C and D are growth constants.
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Figure 1 Phase diagram of Ti-Al alloy.

Fig. 1 shows the phase diagram of Ti-Al alloy
[10].

2.4. Solid fraction
During growth, a cell generates a microscopic increase
in solid fraction equal to:

δ f t
s,cell = V �t

�x
(15)

where V is growth rate; �t is time step; and �x is the
cell size. At each node of the finite-difference mesh, the
microscopic contributions are added and give rise, at
the end of the loop over all grains, to the macroscopic
increases of solid fraction at each node of the FDM
mesh during the time step. It is this macroscopic � fs,i

that is used in the heat balance Equation 2 to determine
the new temperature.

3. Formation of the shrinkage cavity
Due to the consideration of the solidification contrac-
tion, the formation of the shrinkage cavity at the top
of the ingot is taken into account. The total shrinkage
volume (including liquid shrinkage and solidification
contraction) is calculated after each time step �t and
summed. Once the shrinkage volume exceeds the vol-
ume of a macro-element that (1) contains Ti-45 at%
alloy; (2) has a solid fraction less than 0.4 and (3) is
closest to the top or a top-solidified shell, that the macro-
element is considered empty and a new summation is
started. Properties of an empty macro-element are taken
to be those of the insulating powder [11]. In this paper,
the liquid shrinkage coefficient βL and solidification
contraction coefficient βS are taken as 9%/100◦C and
4.42%, respectively.

4. CA modelling
A CA is a dynamical system in which space, time and
states of the system are discrete. Each cell in the regular
spatial lattice can be in any one of a finite number of
states. The rules of transition, which determine the evo-
lution of a given cell during one time step, are defined
according to the states of its neighbor cells. Therefore,
for the CA modelling, the following rules must be pre-

Figure 2 The schematic illustration of CA lattice: (a) solidification state

and (b) phase state of cell.

liminarily determined [12]: (1) the neighborhood of a
cell; (2) the solidification state of cells (liquid or grow-
ing or solid); (3) the rule of nucleation; (4) the rule
of growth; (5) rule of solute redistribution and solute
diffusion and (6) the time step.

Fig. 2 is a schematic representation of CA lattice with
a two-dimensional square enmeshment of cells. In this
paper, the rules of transition are:

(1) 4-cell neighborhood;
(2) three states for a cell: liquid or growing or solid,

as shown in Fig. 2a;
(3) the number of nuclei is calculated by continuous

nucleation model and nucleation sites are distributed
randomly among the liquid cells with the local un-
dercooling larger than the prescribed nucleation under-
cooling;

(4) a solidified cell (fs = 1) will turn its neighboring
liquid cells into growing cells and for growth to occur,
a cell should be at a temperature below the liquidus
temperature for the cell concentration CL ,growing cell and
the growth probabilistic coefficient be larger than a ran-
domly generated number (0–1). The growth rates of the
columnar and the equiaxed are calculated by different
growth models. For Ti-45 at%Al alloy, when tempera-
ture of a growing cell is lower than the peritectic tem-
perature and solid fraction of it smaller than 1, the cell
will solidify as the peritectic phase and the growth rate
is calculated by peritectic growth kinetics model. The
phase state for a cell is shown in Fig. 2b.

(5) if a cell solidifies, it will reject the excess solute to
its neighboring liquid cells and turn them into growing
cells. Then, the liquid concentration CL,growing cell for
the neighboring liquid cells is:

CL ,growing cell = CL ,growing cell + C∗
L ,solidified cell(1 − k)

Num
(16)

where Num is the number of neighboring liquid cells
and C∗

L ,solidified cell(1 − k) is the excess solute rejected
by the solidified cell. Solute diffusion is performed
between the growing cells and the liquid cells by
Equation 4. For the calculation of 〈CL〉L , the following
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Figure 3 The schematic diagram of the ingot and mold.

equation is used:

〈CL〉L =
∑Num1

i=1 CL ,liquid cell,i

Num1
(17)

where Num1 is the number of liquid cells in one macro-
element and CL ,liquid cell is the liquid concentration for
the liquid cell.

(6) the growth of the dendritic network during one
time-step cannot exceed the cell spacing.

5. Results and discussion
The present stochastic model is applied to simulate
the grain structure formation and evolution during the
solidification processes of Ti-45 at%Al alloy ingot.
The schematic of the two-dimensional ingot vertical
section is shown in Fig. 3, where all dimensions are
in millimeters. The calculation domain is divided into
macro-elements for the calculation of temperature, and
each macro-element consists of square cells for the
simulation of grain structure evolution. The values of
the different parameters used in the computation are
listed in Table I.

Due to solidification contraction, air gap may be
formed between the metal and mold interface dur-
ing solidification processes. Thus, a critical part in
realistically simulating solidification of ingot is the
specification of the thermal boundary conditions at the

TABLE I Values of the different parameters used in the computation

Thermo-physical properties of materials

Specific Thermal

Density heat conductivity

Material (kg/m3) (J/kg·K) (W/m·K)

Ti-45 at%Al alloy 3800 887.3 23

A3 steel 7840 386 49.8

Insulating powder 304.4 134.0 0.3201

Other parameters

�Tmax (K) 5

�Tσ (K) 1

nmax (m−3) 3 × 108

�x (μm) 200

outer surfaces and the heat transfer coefficient due to
air gap formation. In this paper, we follow an approach
similar to that has been presented in reference [13].
The detailed characterization of the initial and boundary
conditions required to describe the temperature evolu-
tion in the ingot is summarized in Table II. The expres-
sion for the heat transfer coefficient between the metal
and mold interface, presented in Table II, describes the
decrease in heat transfer that occurs during cooling due
to the air gap formation.

Fig. 4a and b illustrate the effect of the solidifica-
tion contraction on the cooling curves at the point 1 2
and 3 (as shown in Fig. 3) in the ingot. As indicated in
Fig. 4a, the ingot is cooled at a faster rate in compari-
son with Fig. 4b. This is due to, without consideration
of solidification contraction, that no air gap is formed
between the metal and mold interface, which enhances
heat transfer from the metal to the mold. This suggests
that the thermal resistance formed by the air gap may
have an important effect on the solidification processes
of the ingot.

The time dependence of the metal-mold heat transfer
coefficient is shown in Fig. 5, which corresponds to the
case of Fig. 4b. However, in the case of Fig. 4a, metal-
mold heat transfer coefficient is kept as a constant: hi =
hmax = 1500 W m−2 K−1.

An attempt at 2D representation of the distribution
of secondary phases in equiaxed alloys is shown in

(a)

(b)

Figure 4 Cooling curves at different positions in the ingot (a) without

and (b) with the solidification contraction.
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Fig. 6. The white spots represent the last solidified liq-
uid regions, i.e. the last liquid regions prone to peri-
tectic phase formation for Ti-45 at%Al alloy. Usually,
peritectic phases form at the boundary of the primary
arms of columnar dendrites or at the grain boundary
of equiaxed dendrites. As noticed, in Fig. 6, peritectic

Figure 5 Time dependence of the metal-mold heat transfer coefficient.

Figure 6 Last solidified liquid regions in solidification of Ti-45 at%Al

alloy.

Figure 7 Growth kinetics of peritectic phase, as calculated by peritectic

growth kinetics model.

(a)

(b)

(c)

Figure 8 Simulated grain structures of Ti-45 at%Al alloy ingot at three

different cross sections: (a) Section A, (b) Section B and (c) Section C.

phases are randomly distributed at the grain boundary
of the equiaxed.

Growth rates of peritectic phases formed in the last
solidified liquid regions are calculated by peritectic
growth kinetics model. And the relationship between
the growth rate and undercooling is given by solution
of Equation 14. As can be seen in Fig. 7, growth rate
increases with an increasing undercooling.

6075



TABLE I I Initial and boundary conditions used in the thermal analysis

Initial conditions

Initial mold temperature 25◦C

Pouring temperature 1600◦C

Boundary conditions

Heat loss at the surface of the mold Qse = hse(Ts mold − Te) + σεm ((Ts mold + 273)4 − (Te + 273)4)

hse = 10 W m−2 K−1 Te = 25◦C εm = 0.64

σ = 5.67 × 10−8W m−2 K−4

Heat transfer between the metal and mold interface Qcm = hr (Tmold − Tmetal)

(This expression includes conduction, radiation, and hr = hconduction + (1 − fL ) hradiation

gap formation due to solidification contraction.) hconduction = hmin + fL (hmax − hmin)

hradiation = σεcm((Tmold + 273)2 + (Tmetal + 273)2)((Tmold + 273) + (Tmetal + 273))

hmin = 20 W m−2 K−1

hmax = 1500 W m−2 K−1

εcm = 0.72

fL =
⎧⎨⎩

1 if Tmetal > TL
T L−Tmetal

TL−TS if TS < Tmetal < TL
0 if Tmetal < TS

⎫⎬⎭

As the thickness of the mold wall (TMW) directly
affects the cooling rate of the local part, it affects the
grain size. As the TMW increases, finer microstructure
is formed. Three typical cross sections with different
TMW are selected for simulation, as shown in Fig. 3.
Fig. 8 indicates the simulated grain structures. It can
be observed that increasing the TMW, higher cooling
rate in section A leads to more effective nucleation that
results in the formation of the finer microstructure in
comparison with section B and C. In Table III, the cal-
culated and observed average grain sizes are compared.

Taking into account the solidification contraction
during solidification processes, the present stochastic
model gives the grain structure shown in Fig. 9b. As
can be seen, with the formation of a shrinkage cav-
ity at the top part of the ingot, the grain structure is
fully equiaxed and is much closer to the experimen-
tal observation shown in Fig. 10. The change in the
final grain morphology can be better understood by

(a) (b)

Figure 9 Simulated grain structures of Ti-45 at%Al alloy ingot at the vertical section: (a) without and (b) with the solidification contraction.

TABLE I I I The calculated and observed average grain sizes at three

sections

Calculated average Experimental

TMW radius of equiaxed results

Section (mm) grains (mm) (mm)

A 46 0.75 0.7

B 30 1.01 1.12

C 20 1.1 1.3

the formation of air gap between the metal and mold
interface. Fig. 9a indicates that a good wettability at
the metal and mold interface enhances heat transfer and
causes a larger temperature gradient in the liquid, which
favors the columnar grain growth and delays the colum-
nar to the equiaxed transition. And when the equiaxed
grains begin to grow in front of the columnar ones, the
structures remain equiaxed with a slightly elongated
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Figure 10 Experimental solidification grain structure of Ti-45 at%Al

alloy ingot at the vertical section.

morphology due to a strong thermal gradient in the
liquid. When considering the air gap formation, tem-
perature gradient in the liquid may decrease due to a
decrease in the metal-mold heat transfer coefficient and
thus, the CET may easily occur.

6. Conclusions
A comprehensive stochastic model for simulating grain
structure formation and evolution has been developed,
based on a finite differential method (FDM) for macro-
scopic heat flow calculation and a cellular automaton

method (CA) for microscopic modelling of nucleation,
growth, solute redistribution and solute diffusion. For
Ti-45 at%Al alloy, the formation of peritectic phases
in the last solidified liquid regions is considered. The
growth rates of peritectic phases are calculated by peri-
tectic growth kinetics model. The solidification con-
traction is also taken into account. The simulated results
are in good agreement with those obtained experimen-
tally. It is found that the present stochastic model can be
successfully applied to predict the grain structure for-
mation and evolution during solidification processes.

Acknowledgements
Authors would like to thank the National Natural Sci-
ence Foundation of China (50395102) and the Distin-
guished Young Foundation of Heilongjiang Province
(Jc-02-10) for their financial support.

References
1. C . Y . W A N G and C. B E C K E R M A N N , Metall. Trans. A. 24

(1993) 2787.

2. C H.-A. G A N D I N, C H. C H A R B O N and M. R A P P A Z , ISIJ.

35 (1995) 651.

3. J . A . S P I T T L E and S . G . R . B R O W N , Acta Metall. 37 (1989)

1803.

4. M. R A P P A Z and C H.-A. G A N D I N , Acta Metall. 41 (1992)

345.

5. L A U R E N T I U N A S T A C and D O R U M. S T E F A N E S C U ,

Modell. Simul. Mater. Sci. Eng. 5 (1997) 391.

6. L . N A S T A C and D O R U M. S T E F A N E S C U , Metall. Trans. A.

27 (1996) 4061.

7. T O N G M I N W A N G, J U N Z E J I N , X I A N S H U Z H E N G and

I T S U O O H N A K E , Int. J. Cast Metals Res. 15 (2002) 231.

8. W. K U R Z, B . G I O V A N O L A and R. T R I V E D I , Acta Metall.
34 (1986) 823.

9. H . W. K E R R and W. K U R Z , Inter. Mater. Rev. 41 (1996)

129.

10. Y . Q . S U, C . L I U , X . Z . L I , J . J . G U O, B . S . L I ,
J . J I A and H. Z . F U , Intermetallics 13 (2005) 267.

11. J . P . G U and C. B E C K E R M A N N , Metall. Trans. A. 30 (1999)

1357.

12. C H.-A. G A N D I N and M. R A P P A Z , Acta Metall. 42 (1994)

2233.

13. A . J A C O T, D. M A I J E R and S . C O C K C R O F T , Metall. Trans.
A 31 (2000) 2059.

Received 12 October 2004
and accepted 7 March 2005

6077


